Welcome to International Workshop on Open Component Ecosystems 

Insect pollinators include bees, (honey bees, solitary species, bumblebees); pollen wasps (Masarinae); ants; flies including bee flies, hoverflies and mosquitoes; lepidopterans, both butterflies and moths; and flower beetles. Vertebrates, mainly bats and birds, but also some non-bat mammals (monkeys, lemurs, possums, rodents) and some lizards pollinate certain plants. Among the pollinating birds are hummingbirds, honeyeaters and sunbirds with long beaks; they pollinate a number of deep-throated flowers. Humans may also carry out artificial pollination.
The most recognized pollinators are the various species of bees, which are plainly adapted to pollination. Bees typically are fuzzy and carry an electrostatic charge. Both features help pollen grains adhere to their bodies, but they also have specialized pollen-carrying structures; in most bees, this takes the form of a structure known as the scopa, which is on the hind legs of most bees, and/or the lower abdomen (e.g., of megachilid bees), made up of thick, plumose setae. Honey bees, bumblebees, and their relatives do not have a scopa, but the hind leg is modified into a structure called the corbicula (also known as the "pollen basket"). Most bees gather nectar, a concentrated energy source, and pollen, which is high protein food, to nurture their young, and inadvertently transfer some among the flowers as they are working.
Many insects other than bees accomplish pollination by visiting flowers for nectar or pollen, or commonly both. Many do so adventitiously, but the most important pollinators are specialists for at least parts of their lifecycles for at least certain functions. For example, males of many species of Hymenoptera, including many hunting wasps, rely on freely flowering plants as sources of energy (in the form of nectar) and also as territories for meeting fertile females that visit the flowers. Prominent examples are predatory wasps (especially Sphecidae, Vespidae, and Pompilidae). The term "pollen wasps", in particular, is widely applied to the Masarinae, a subfamily of the Vespidae; they are remarkable among solitary wasps in that they specialise in gathering pollen for feeding their larvae, carried internally and regurgitated into a mud chamber prior to oviposition.
Lepidoptera (butterflies and moths) also pollinate plants to various degrees. They are not major pollinators of food crops, but various moths are important pollinators of other commercial crops such as tobacco. Pollination by certain moths may be important, however, or even crucial, for some wildflowers mutually adapted to specialist pollinators. Spectacular examples include orchids such as Angraecum sesquipedale, dependant on a particular hawk moth, Morgan's sphinx. Yucca species provide other examples, being fertilised in elaborate ecological interactions with particular species of yucca moths.
Hoverflies are important pollinators of flowering plants worldwide. Often hoverflies are considered to be the second most important pollinators after wild bees. Although hoverflies as a whole are generally considered to be nonselective pollinators, some species have more specialized relationships. The orchid species Epipactis veratrifolia mimics alarm pheromones of aphids to attract hover flies for pollination. Another plant, the slipper orchid in southwest China, also achieves pollination by deceit by exploiting the innate yellow colour preference of syrphide.
Humans can be pollinators, as many gardeners have discovered that they must hand pollinate garden vegetables, whether because of pollinator decline (as has been occurring in parts of the U.S. since the mid-20th century) or simply to keep a strain genetically pure. This can involve using a small brush or cotton swab to move pollen, or to simply tap or shake tomato blossoms to release the pollen for the self pollinating flowers. Tomato blossoms are self-fertile, but (with the exception of potato-leaf varieties) have the pollen inside the anther, and the flower requires shaking to release the pollen through pores. This can be done by wind, by humans, or by a sonicating bee (one that vibrates its wing muscles while perched on the flower), such as a bumblebee. Sonicating bees are extremely efficient pollinators of tomatoes, and colonies of bumblebees are quickly replacing humans as the primary pollinators for greenhouse tomatoes.
Declines in the health and population of pollinators pose what could be a significant threat to the integrity of biodiversity, to global food webs, and to human health. At least 80% of our world's crop species require pollination to set seed. An estimated one out of every three bites of food comes to us through the work of animal pollinators. The quality of pollinator service has declined over time and this had led to concerns that pollination will be less resistant to extinction in the future.